Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 8913-8921, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335318

RESUMO

Mixed-halide perovskites of the composition MAPb(BrxI1-x)3, which seem to exhibit a random and uniform distribution of halide ions in the absence of light, segregate into bromide- and iodide-rich phases under illumination. This phenomenon of halide segregation has been widely investigated in the photovoltaics context since it is detrimental for the material properties and ultimately the device performance of these otherwise very attractive materials. A full understanding of the mechanisms and driving forces has remained elusive. In this work, a study of the crystallization pathways and the mixing behavior during deposition of MAPb(BrxI1-x)3 thin films with varying halide ratios is presented. In situ grazing incidence wide-angle scattering (GIWAXS) reveals the distinct crystallization behavior of mixed-halide perovskite compositions during two different fabrication routes: nitrogen gas-quenching and the lead acetate route. The perovskite phase formation of mixed-halide thin films hints toward a segregation tendency since separate crystallization pathways are observed for iodide- and bromide-rich phases within the mixed compositions. Crystallization of the bromide perovskite phase (MAPbBr3) is already observed during spin coating, while the iodide-based fraction of the composition forms solvent complexes as an intermediate phase, only converting into the perovskite phase upon thermal annealing. These parallel crystallization pathways result in mixed-halide perovskites forming from initially halide-segregated phases only under the influence of heating.

2.
Adv Mater ; 36(6): e2307743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988595

RESUMO

All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

3.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862478

RESUMO

We demonstrate a compact sample environment for the in situ study of crystallization kinetics of thin films on synchrotron beamlines, featuring atmospheric control, automated deposition, spin-coating, and annealing stages. The setup is suitable for studying thin film growth in real time using grazing-incidence X-ray diffraction techniques. Humidity and oxygen levels are being detected by sensors. The spinning stage exhibits low vertical oscillation amplitude (∼3µm at speeds up to 10 000 rpm) and can optionally be employed for antisolvent application or gas quenching to investigate the impact of these techniques, which are often used to assist thin film growth. Differential reflectance spectroscopy is implemented in the spin-coater environment for inspecting thin film thickness and optical properties. The infrared radiation-based annealing system consists of a halogen lamp and a holder with an adjustable lamp-to-sample distance, while the sample surface temperature is monitored by a pyrometer. All features of the sample environment can be controlled remotely by the control software at synchrotron beamlines. In order to test and demonstrate the performance, the crystallization pathway of the antisolvent-assisted MAPbI3 (MA = methylammonium) perovskite thin film during the spinning and annealing stages is monitored and discussed.

4.
Adv Sci (Weinh) ; 10(17): e2206325, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078840

RESUMO

Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2 -xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.

5.
Adv Sci (Weinh) ; 9(24): e2200379, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35780500

RESUMO

A comprehensive study of the optical properties of CsPbBr3 perovskite multiple quantum wells (MQW) with organic barrier layers is presented. Quantum confinement is observed by a blue-shift in absorption and emission spectra with decreasing well width and agrees well with simulations of the confinement energies. A large increase of emission intensity with thinner layers is observed, with a photoluminescence quantum yield up to 32 times higher than that of bulk layers. Amplified spontaneous emission (ASE) measurements show very low thresholds down to 7.3 µJ cm-2 for a perovskite thickness of 8.7 nm, significantly lower than previously observed for CsPbBr3 thin-films. With their increased photoluminescence efficiency and low ASE thresholds, MQW structures with CsPbBr3 are excellent candidates for high-efficiency perovskite-based LEDs and lasers.

6.
J Phys Chem Lett ; 12(42): 10325-10332, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34662520

RESUMO

Layered hybrid perovskites based on Dion-Jacobson phases are of interest to various optoelectronic applications. However, the understanding of their structure-property relationships remains limited. Here, we present a systematic study of Dion-Jacobson perovskites based on (S)PbX4 (n = 1) compositions incorporating phenylene-derived aromatic spacers (S) with different anchoring alkylammonium groups and halides (X = I, Br). We focus our study on 1,4-phenylenediammonium (PDA), 1,4-phenylenedimethylammonium (PDMA), and 1,4-phenylenediethylammonium (PDEA) spacers. Systems based on PDA did not form a well-defined layered structure, showing the formation of a 1D structure instead, whereas the extension of the alkyl chains to PDMA and PDEA rendered them compatible with the formation of a layered structure, as shown by X-ray diffraction and solid-state NMR spectroscopy. In addition, the control of the spacer length affects optical properties and environmental stability, which is enhanced for longer alkyl chains and bromide compositions. This provides insights into their design for optoelectronic applications.

7.
Nat Commun ; 12(1): 3383, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099667

RESUMO

Formamidinium lead iodide perovskites are promising light-harvesting materials, yet stabilizing them under operating conditions without compromising optimal optoelectronic properties remains challenging. We report a multimodal host-guest complexation strategy to overcome this challenge using a crown ether, dibenzo-21-crown-7, which acts as a vehicle that assembles at the interface and delivers Cs+ ions into the interior while modulating the material. This provides a local gradient of doping at the nanoscale that assists in photoinduced charge separation while passivating surface and bulk defects, stabilizing the perovskite phase through a synergistic effect of the host, guest, and host-guest complex. The resulting solar cells show power conversion efficiencies exceeding 24% and enhanced operational stability, maintaining over 95% of their performance without encapsulation for 500 h under continuous operation. Moreover, the host contributes to binding lead ions, reducing their environmental impact. This supramolecular strategy illustrates the broad implications of host-guest chemistry in photovoltaics.

8.
J Am Chem Soc ; 143(3): 1529-1538, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442979

RESUMO

The use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA+) and 2-(perfluorophenyl)ethylammonium (FEA+) moieties, revealing nanoscale phase segregation. Moreover, we illustrate the application of this structure in perovskite solar cells with power conversion efficiencies that exceed 21%, accompanied by enhanced operational stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...